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ABSTRACT

The CORDIC (Coordinate Rotation Digital Computer) algorithm1

computes certain functions such as the sine, cosine, and X + 2 using only
additions and bit shifting operations.

We have implemented an integer math CORDIC algorithm on a high
speed RISC processor. During the course of this work, we identified a
convergence problem with the "x2+y2 CORDIC. A solution to this problem is
presented along with an overview of this algorithm.
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I. INTRODUCTION

The CORDIC algorithm1 utilizes a series of rotations on a two
dimensional vector to compute the following: sin(z), cos(z), arc tan(y/x),

and Nx2 + y2 . In its generalized version it has also been shown to have the
capability of performing multiplication and division, as well as computing

hyperbolic functions, and -NFX2-y2

CORDIC has found its way into desk calculators, specifically, the HP-
9100 series2 ; moreover, it has proven useful in calculating the Fourier
Transform 3 , and also the singular values of a matrix 4 . The algorithm can be
implemented either in software or on a single digital IC5 .

We first discuss the CORDIC algorithm, and then present a problem we
encountered in its use. Since our project involves real time control and
requires an extremely small computer, we are using integer math in an RTX
2000 processor 6 programmed in its native FORTH language. A problem

arose in the evaluation of X2 + y2 . using CORDIC. We characterize the
problem and present our solution.

II. THEORY

The main working equations of the CORDIC algorithm can be related to
the orthogonal transformation equations used to rotate a two dimensional
vector. Let us assume our original vector R has components x and y. The
transformation equations which rotate this vector through a positive
clockwise angle 8 are :

(1) x'= xcos(5) +ysin(8)

(2) y' = -x sin(8) + y cos(8)
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Y
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Figure 1: Orthogonal Rotation

Since the polar coordinate 0 of a vector is normally defined in the
counter-clockwise direction, the change in 0, that is AO, is the negative of
this rotation angle 8 (AO= -8) . This is an orthogonal transformation, and
the length of the rotated vector, R', is the same as the length of the original
vector, R.

For very small rotation angles sin (8) 8, and cos (8) - 1
Plugging in these approximations and reversing the order of the terms in
equation (2), we have:

(3) x'= x + y 8
(4) y' = y -x 8

Equations (3) and (4), along with a third equation which keeps track of
the cumulative angle of rotation (when this is relevant), are the main
working equations of the CORDIC algorithm. The details of this procedure are
discussed below in the ALGORITHM section (Section III).

The transformation equations are now no longer orthogonal, and
correspond not only to a rotation, but also a stretching of the vector It is
shown below that the stretch factor (K) equals " +82

(5) R'= (x )2 +(y,) 2

(6) R' =;(x + Y BY +(Y- x 8Y

(7) R,= 1 x2+Y28+y2+x2

(8) R'- ((x2+y2I + 82)

2
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(9) R'=RN 1+2

Furthermore, 8 no longer represents the angle of rotation for the
vector, but instead the vector will have been rotated clockwise through an
angle a equal to the arctan(8). The fact that a equals the arctan(8) is proven
next.

Define a vector V that has the same length as R and the same direction
as R'.

Y
SR'

V

X

Figure 2: Cordic Rotation

Since the magnitude of V = R =R' / /] + 82, the components of V,

namely x, and yv, are equal to x' / " + 62 and y' / 1 + 62. respectively.

Since x' = x + y*1+6 we have Xv x + y*) / I+82 , and therefore,

(10) x v =x/ 1+62 + y* 1+62

The V vector is the R vector after an orthogonal clockwise rotation through
an angle ax, the transformation equation for xv has the form

(11) xv = x* cos (a) + y*sin (ca)

Comparing equations (10) and (11) for xv we see that

(12) sin (8) =/ +2 and (13) cos (a) = 1 1 +82

Recall that

3
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(14) tan (a) = sin (o) / cos (a)

Plugging the expressions in (12) and (13) into (14) we get tan (a) = 8 or

a = arctan(S). The same result can be obtained by an analysis of the y
component of V.

Ill. THE ALGORITHM

There are two modes for the CORDIC algorithm. One is called vectoring;
the other, rotation. The vectoring mode will be explained in detail since our

problem arose in this mode when we tried to compute 'A2 + Y2 . For an
explanation of how the rotation mode can be used to compute such functions
as the sine and cosine, the reader should consult one the references,2,7,8 .

The vectoring mode is useful when the x and y components of a vector

are given and the magnitude ",/-X2+y 2 and/or the arctan(y/x) are desired. In
this mode the successive CORDIC rotations are carried out in such a way as
to eventually "force y to zero". Each iteration corresponds to a

nonorthogonal rotation, and stretches the vector by a factor of 1 +
This stretch factor is independent of the direction of the rotation. The
cumulative stretch factors are listed in Table 2. After y has been forced to
zero (i.e. the vector has been rotated to align with the +x axis ), the

magnitude, -x2 + y2 , is obtained by dividing the value in the x variable by
the cumulative stretch factor.

To compute '11x2 + Y2 the working equations are:

(15) xi+ 1 = x i + yi 8i

(16) Yj+l = Yi - xi8i

where for the ith iteration i = + (1/2)i and i = 0, 1, 2, 3 ...

The ± sign is selected by checking whether yi is positive or negative.
In order to force y to zero, if yi is positive, then 8i is positive, and xi 8i is
subtracted from y, ( N.B. xi is always positive ). Conversely, if yj is
negative, then 8i is chosen to be negative also.

Multiplying x i or y, by 8i is achieved by right shifting the value. For
example, if i equals 3 then 83 equals (1/2)3 . The value of Y3 53 is then
computed by simply shifting the binary value of Y3 three places to the right.

4
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In the X +Y2 computation there is no need to keep track of the
cumulative rotation angle. However, If the arctan(y/x) of the original
vector is desired, then one simply sums up the angles of rotation (avi)
produced by each iteration (recall, ai - arc tan (8i)).

5
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IV. INTEGER ARITHMETIC PROBLEM

The RTX processor is equipped with specialized square root
instructions. This routine will take the square root of any positive integer
up to 31 bits long (corresponding to the decimal range of zero to
2,147,483,647). This may seem like a large range, but in the special case

where x equals y in x2 + Y2 , the maximum value for x is only 32,767. This
is not adequate for our purposes. We tried using a 63 bit square root
algorithm, but CORDIC executed faster. Using CORDIC we can extend the
range of the input values, x and y, to 30 bits.

Unfortunately, when we tested our CORDIC square root function, we
came across the difficulty illustrated in the following exampie.

Suppose x equals 333 and y equals 444 . We can expect " Y2 2to

yi. ld 555 since this is a 3-4-5 triangle. Below we present a table of xi, y,
xi 8i, and yj 5i after each iteration as determined by the algorithm discussed
above.

Table 1: Example

i _xi Yi xii yi 6,
0 333 444 333 444
1 777 111 388 55
2 832 -277 208 -70
3 902 -69 112 -9

4 911 43 56 2
5 913 -13 28 -1

6 914 15 14 0
7 914 1 7 0

8 914 -6 3 -1I
9 915 -3 1 -I

10 916 -2 0 -I
11 917 -2 0 -I

12 918 -2 0_ -I
13 919 -2 0-I
14 920 -2 0-I
15 921 -2 0-I

The reader will note that after iteration #7 the value of y is closest
to zero. If the value of x after iteration #7 ( namely, 914 ) is divided by the
stretch facter ( see table 2 ) of 1.6466932543, and then rounded to an

6
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integer, the result turns out to be the correct integer, 555. However, Arter
iteration #9, y is stuck at -2, but x ( and therefore the result ) continues to
grow.

Table 2: Stretch Factors

Iteration Number Stretch Factor (K)
0 1.4142135624
1 1.5811388301
2 1.6298006013
3 1.6424840658
4 1.6456889158
5 1.6464922787
6 1.6466932543
7 1.6467435066
8 1.6467560702
9 1.6467592111
10 1.6467599964
11 1.6467601927
12 1.6467602418
13 1.6467602540
14 1.6467602571
15 1.6467602579
16 1.6467602581
17 1.6467602581
18 1.6467602581
19 1.6467602581
20 1.6467602581
21 1.6467602581
22 1.6467602581
23 1.6467602581
24 1.6467602581
25 1.6467602581
26 1.6467602581
27 1.6467602581
28 1.6467602581
29 1.6467602581
30 1.6467602581
31 1.6467602581

7
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V. SOLUTIONS

We considered several ways to patch the algorithm. Since the y value
could not always be forced exactly to zero, we needed another condition that
would reliably halt the iterative process without introducing too much error

in the result ( x2 + Y2). We considered checking for small rates of change in
x, y, x8, or y8. We decided instead to check whether the absolute value 'Of y
was less than some predetermined cutoff value as our halt condition. The
values in Table 1 suggested to us that if the absolute value of y became less
than three, it was time to stop. This condition was tested by looping
through millions of combinations of integers that maintain the 3-4-5
proportionality and were in our range of interest. We also decided to test
other limits for y. The limit for y was incremented from 0 to 127. Table 3
is a representative selection of the distribution of errors as a function of
the lYl cutoff. The error frequency counts were truncated to 32760 to avoid
overflow. When the IYI cutoff was less than three, a second peak in the
error distribution appears between 10 and 14. These occurrences resulted
from cases which were never halted at maturity. The drift from the correct
result continued until the DO loop was completed (32 iterations).

Using the combinations of integers that maintain the 3-4-5
proportionality, the error stayed below six for a broad range of Iy cutoff
values. Eventually, at a sufficiently high cutoff (approximately 100) the
size of the error began to rise due to premature halting of the algorithm.
These cases involved small initial values of x and y. In particular, when the
initial value of y was less than the cutoff, the algorithm halted immediately
and returned the initial value of x as its result.

8
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Table 3: Error Freque cy Vs. Size of Error and Cutoff
yI<0* 1 2 3 28 60 80 101

Error__ _ __ __

0 26 665 1810 3078 32760 32760 32760 32760
1 2566 16177 32760 32760 32760 32760 32760 32760
2 23370 32760 32760 32760 32760 28259 19375 19150
3 32760 32760 32760 32760 8528 6803 5446 4359
4 21159 26561 19078 9693 1446 734 574 436
5 8043 6709 3809 2385 61 4 2 22
6 3159 1188 272 138 1 0 0 1
7 1190 432 5 1 0 0 0 0
8 812 125 0 0 0 0 0 0
9 15729 3839 0 0 0 0 0 0
10 32760 21286 8 0 0 0 0 0
11 32760 16511 1 1 0 0 0 0 0
12 7576 3258 3 0 0 0 0 0
13 1465 510 5 0 0 0 0 0
14 412 239 37 0 0 0 0 0
15 68 31 1 0 0 0 0 0
16 2 0 0 0 0 0 0 0
17 1 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0

* This is equivalent to the standard CORDIC algorithm (no lyl cutoff).

Other combinations of integers were also tested. For example,
integers that maintain the 5-12-13 proportionality, as well as integers
generated randomly, were studied. The general features of the distribution
of errors as a function of the IYI cutoff remained the same; however, the
region where the errors were less than six moved around.

The function which we finally implemented involves a hybrid

approach to evaluating x2 + Y2. Whenever the input values of both
x and y are smaller than 32768, the RTX processor's 31 bit square
root function is employed. Otherwise, CORDIC with a lyl cutoff of 100
is used. This combined the best of both worlds. The built in routine
was very fast, but could not handle large numbers; whereas, CORDIC
produced a much smaller per cent error for large numbers than it
did for small numbers. Setting the lyl cutoff at 100 has the
advantage of providing a relatively quick exit condition.

9
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Furthermore, very little is lost with this choice of cutoff since we
only use CORDIC for large values of x and y. Suppose, for example,
the initial values of x and y are 30,000 and 40,000 respectively.
Since one of these numbers is larger than 32768 we would utilize

CORDIC. The expected result for l/x2 + Y2 is 50,000. When the vector
has been rotated such that y = 100, the value of x is then 49,999.9
(ignoring the stretch factor for the sake of argument). The truncated
value of 49,999 is only one less than the correct value of 50,000.

VI. CONCLUSION

While the CORDIC algorithm provides a simple method of evaluation for
a wide variety of functions, we found that caution is necessary in certain

circumstances. In particular, when integer arithmetic is used and /x 2 +y2
is evaluated by CORDIC, significant errors sometimes arise. This is
especially bothersome for small initial values of both x and y. One way to
handle this problem is to place a cutoff condition on the absolute value of y.
Usually, a built in square root function is available; however, its range may
be too limited. We recommend using the built in function because of its
speed and accuracy whenever it is possible, and using CORDIC with a
suitable cutoff on the absolute value of y to extend the range.

10
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