Report No. NADC-91067-50

THE SQUARE ROOT CORDIC

Ronald F. Gleeson Department of Physics TRENTON STATE COLLEGE Trenton, NJ 08650

James J. Davidson, Robert M. Williams and Robert G. Peck Mission Avionics Technology Department (Code 5051) NAVAL AIR DEVELOPMENT CENTER Warminster, PA 18974-5000

26 JULY 1991

FINAL REPORT Period Covering March 1991 to July 1991

Approved for Public Release; Distribution is Unlimited

Prepared for NAVAL AIR SYSTEMS COMMAND (PMA-263) Washington, DC 20361-0001

91 10 25 014

NOTICES

REPORT NUMBERING SYSTEM — The numbering of technical project reports issued by the Naval Air Development Center is arranged for specific identification purposes. Each number consists of the Center acronym, the calendar year in which the number was assigned, the sequence number of the report within the specific calendar year, and the official 2-digit correspondence code of the Command Officer or the Functional Department responsible for the report. For example: Report No. NADC-88020-60 indicates the twentieth Center report for the year 1988 and prepared by the Air Vehicle and Crew Systems Technology Department. The numerical codes are as follows:

CODE OFFICE OR DEPARTMENT

- 00 Commander, Naval Air Development Center
- 01 Technical Director, Naval Air Development Center
- 05 Computer Department
- 10 AntiSubmarine Warfare Systems Department
- 20 Tactical Air Systems Department
- 30 Warfare Systems Analysis Department
- 40 Communication Navigation Technology Department
- 50 Mission Avionics Technology Department
- 60 Air Vehicle & Crew Systems Technology Department
- 70 Systems & Software Technology Department
- 80 Engineering Support Group
- 90 Test & Evaluation Group

PRODUCT ENDORSEMENT — The discussion or instructions concerning commercial products herein do not constitute an endorsement by the Government nor do they convey or imply the license or right to use such products.

<u>8/9/9/</u> 9/3/9/ 9/4/SI S P Date: **Reviewed By: Branch Head** Date: **Reviewed By: Division Head** Date **Reviewed By: Director/Deputy Director**

	Form Approved CMB No 0704-0188		
Public reporting burden for this corection of info gathering and maintaining the data needed, and corection of information, including suggestions	completing and reviewing the collection of i	information. Send comments reparain	A no instructions sear hind existing data sources githis burden estimate or any other aspect of the ormation Operations and Reports, 1215 Jefferson 026407 881, Adaption 2010, 000 2003
I. AGENCY USE ONLY (Leave bland		3. REPORT TYPE AND C	
. TITLE AND SUBTITLE		5.	FUNDING NUMBERS
The Square Root COR	DIC		
Ronald F. Gleeson*, Ja Robert M. Williams, Re			
PERFORMING ORGANIZATION NA			PERFORMING ORGANIZATION REPORT NUMBER
Mission Avionics Tech NAVAL AIR DEVELOPMENT Warminster, PA 18974	CENTER		IADC-91067-50
SPONSORING MONITORING AGE NAVAL AIR SYSTEMS COM Washington, DC 20361	mand (pma-263))	D. SPONSORING MONITORING AGENCY REPORT NUMBER
1. SUPPLEMENTARY NOTES *Ronald F. Gleeson Department of Physics		3650	
2a. DISTRIBUTION AVAILABILITY S	TATEMENT	12	26. DISTRIBUTION CODE
Approved for Public R Distribution is Unlim			
13. ABSTRACT (Maximum 200 words	Doordinate Rotation		
computes certain func additions and bit shi	tions such as the sing operations. Thented an integer main the cours with the $\sqrt{x^2 + y^2}$ CC	ne, cosine, and $$ th CORDIC algorit se of this work, we DRDIC. A solutio	x ² + y ² using only hm on a high e identified a
computes certain func additions and bit shi We have implem speed RISC processo convergence problem presented along with	tions such as the sing operations. Thented an integer main the cours with the $\sqrt{x^2 + y^2}$ CC	ne, cosine, and $$ th CORDIC algorit se of this work, we DRDIC. A solutio	x ² + y ² using only hm on a high e identified a
computes certain func additions and bit shi We have implen speed RISC processo convergence problem presented along with	tions such as the sing operations. Thented an integer main the cours with the $\sqrt{x^2 + y^2}$ CC	ne, cosine, and $$ th CORDIC algorit se of this work, we DRDIC. A solutio	x ² + y ² using only hm on a high e identified a n to this problem is
computes certain func additions and bit shi We have implen speed RISC processo convergence problem presented along with	tions such as the sing operations. Thented an integer main the cours with the $\sqrt{x^2 + y^2}$ CC	ne, cosine, and $$ th CORDIC algorit se of this work, we DRDIC. A solutio	x ² + y ² using only thm on a high e identified a n to this problem is 15. NUMBER OF PAGES 16. PRICE CODE

TABLE OF CONTENTS

Section	on	Page
List o	ist of Figures	
List o	of Tables	ii
Abst	ract	iii
I.	Introduction	1
11.	Theory	1
111.	Algorithm	4
IV.	Integer Arithmetic Problem	6
V.	Solutions	8
VI.	Conclusion	10
Refe	References	

Accession For NTIS GRA&I DTIC TAB Unannounced Justification___ ----------By.____ Distribution/ Availability Codes Avail and/cr

Creatal

Dist

DT

LIST OF FIGURES

No.	Figure	Page
1	Orthogonal Rotation	2
2	Cordic Rotation	3

LIST OF TABLES

No.	Table	Page
1	Example	6
2	Stretch Factors	7
3	Error Frequency Vs. Size of Error and Cutoff	9

ABSTRACT

The CORDIC (Coordinate Rotation Digital Computer) algorithm¹ computes certain functions such as the sine, cosine, and $\sqrt{x^2 + y^2}$ using only additions and bit shifting operations.

We have implemented an integer math CORDIC algorithm on a high speed RISC processor. During the course of this work, we identified a convergence problem with the $\sqrt{x^2 + y^2}$ CORDIC. A solution to this problem is presented along with an overview of this algorithm.

I. INTRODUCTION

The CORDIC algorithm¹ utilizes a series of rotations on a two dimensional vector to compute the following: $\sin(z)$, $\cos(z)$, arc $\tan(y/x)$, and $\sqrt{x^2 + y^2}$. In its generalized version it has also been shown to have the capability of performing multiplication and division, as well as computing hyperbolic functions, and $\sqrt{x^2 - y^2}$.

CORDIC has found its way into desk calculators, specifically, the HP-9100 series²; moreover, it has proven useful in calculating the Fourier Transform³, and also the singular values of a matrix⁴. The algorithm can be implemented either in software or on a single digital IC⁵.

We first discuss the CORDIC algorithm, and then present a problem we encountered in its use. Since our project involves real time control and requires an extremely small computer, we are using integer math in an RTX 2000 processor⁶ programmed in its native FORTH language. A problem arose in the evaluation of $\sqrt{x^2 + y^2}$. using CORDIC. We characterize the problem and present our solution.

II. THEORY

The main working equations of the CORDIC algorithm can be related to the orthogonal transformation equations used to rotate a two dimensional vector. Let us assume our original vector **R** has components x and y. The transformation equations which rotate this vector through a positive clockwise angle δ are :

- (1) $x' = x \cos(\delta) + y \sin(\delta)$
- (2) $y' = -x \sin(\delta) + y \cos(\delta)$

Figure 1: Orthogonal Rotation

Since the polar coordinate θ of a vector is normally defined in the counter-clockwise direction, the change in θ , that is $\Delta \theta$, is the negative of this rotation angle δ ($\Delta \theta = -\delta$). This is an orthogonal transformation, and the length of the rotated vector, **R**', is the same as the length of the original vector, **R**.

For very small rotation angles sin $(\delta) \approx \delta$, and cos $(\delta) \approx 1$. Plugging in these approximations and reversing the order of the terms in equation (2), we have:

(3)
$$x' = x + y \delta$$

(4) $y' = y - x \delta$

Equations (3) and (4), along with a third equation which keeps track of the cumulative angle of rotation (when this is relevant), are the main working equations of the CORDIC algorithm. The details of this procedure are discussed below in the ALGORITHM section (Section III).

The transformation equations are now no longer orthogonal, and correspond not only to a rotation, but also a stretching of the vector It is shown below that the stretch factor (K) equals $\sqrt{1+\delta^2}$

(5)
$$R' = \sqrt{(x')^2 + (y')^2}$$

(6)
$$R' = \sqrt{(x + y \delta)^2 + (y - x \delta)^2}$$

(7)
$$R' = \sqrt[4]{x^2 + y^2\delta^2 + y^2 + x^2\delta^2}$$

(8)
$$R' = \sqrt{(x^2 + y^2)(1 + \delta^2)}$$

(9)
$$R' = R \sqrt{1 + \delta^2}$$

Furthermore, δ no longer represents the angle of rotation for the vector, but instead the vector will have been rotated clockwise through an angle α equal to the arctan(δ). The fact that α equals the arctan(δ) is proven next.

Define a vector ${\bf V}$ that has the same length as ${\bf R}$ and the same direction as ${\bf R'}.$

Since the magnitude of V = R = R' / $\sqrt{1 + \delta^2}$, the components of V, namely x_v and y_v , are equal to x' / $\sqrt{1 + \delta^2}$ and y' / $\sqrt{1 + \delta^2}$. respectively. Since x' = x + y* δ , we have $x_v = (x + y*\delta) / \sqrt{1 + \delta^2}$, and therefore,

(10)
$$x_v = x / \sqrt{1 + \delta^2} + y \star \delta / \sqrt{1 + \delta^2}$$

The V vector is the R vector after an orthogonal clockwise rotation through an angle α , the transformation equation for x_v has the form

(11)
$$x_v = x + \cos(\alpha) + y + \sin(\alpha)$$

Comparing equations (10) and (11) for x_v we see that

(12)
$$\sin(\delta) = \delta / \sqrt{1 + \delta^2}$$
 and (13) $\cos(\alpha) = 1 / \sqrt{1 + \delta^2}$

Recall that

(14) $\tan (\alpha) = \sin (\alpha) / \cos (\alpha)$

Plugging the expressions in (12) and (13) into (14) we get $\tan (\alpha) = \delta$ or $\alpha = \arctan(\delta)$. The same result can be obtained by an analysis of the y component of V.

III. THE ALGORITHM

There are two modes for the CORDIC algorithm. One is called vectoring; the other, rotation. The vectoring mode will be explained in detail since our problem arose in this mode when we tried to compute $\sqrt{x^2 + y^2}$. For an explanation of how the rotation mode can be used to compute such functions as the sine and cosine, the reader should consult one the references^{1,2,7,8}.

The vectoring mode is useful when the x and y components of a vector are given and the magnitude $\sqrt{x^2 + y^2}$ and/or the $\arctan(y/x)$ are desired. In this mode the successive CORDIC rotations are carried out in such a way as to eventually "force y to zero". Each iteration corresponds to a nonorthogonal rotation, and stretches the vector by a factor of $\sqrt{1 + \delta_i^2}$. This stretch factor is independent of the direction of the rotation. The cumulative stretch factors are listed in Table 2. After y has been forced to zero (i.e. the vector has been rotated to align with the +x axis), the magnitude, $\sqrt{x^2 + y^2}$, is obtained by dividing the value in the x variable by the cumulative stretch factor.

To compute $\sqrt{x^2 + y^2}$ the working equations are:

(15) $x_{i+1} = x_i + y_i \delta_i$ (16) $y_{i+1} = y_i - x_i \delta_i$

where for the ith iteration $\delta_i = \pm (1/2)^i$ and i = 0, 1, 2, 3...

The ± sign is selected by checking whether y_i is positive or negative. In order to force y to zero, if y_i is positive, then δ_i is positive, and $x_i \delta_i$ is subtracted from y_i (N.B. x_i is always positive). Conversely, if y_i is negative, then δ_i is chosen to be negative also.

Multiplying x_i or y_i by δ_i is achieved by right shifting the value. For example, if i equals 3 then δ_3 equals $(1/2)^3$. The value of $y_3 \delta_3$ is then computed by simply shifting the binary value of y_3 three places to the right.

In the $\sqrt{x^2 + y^2}$ computation there is no need to keep track of the cumulative rotation angle. However, If the $\arctan(y/x)$ of the original vector is desired, then one simply sums up the angles of rotation (α_i) produced by each iteration (recall, $\alpha_i = \arctan(\delta_i)$).

IV. INTEGER ARITHMETIC PROBLEM

The RTX processor is equipped with specialized square root instructions. This routine will take the square root of any positive integer up to 31 bits long (corresponding to the decimal range of zero to 2,147,483,647). This may seem like a large range, but in the special case where x equals y in $\sqrt{x^2 + y^2}$, the maximum value for x is only 32,767. This is not adequate for our purposes. We tried using a 63 bit square root algorithm, but CORDIC executed faster. Using CORDIC we can extend the range of the input values, x and y, to 30 bits.

Unfortunately, when we tested our CORDIC square root function, we came across the difficulty illustrated in the following example.

Suppose x equals 333 and y equals 444. We can expect $\sqrt{x^2 + y^2}$ to yield 555 since this is a 3-4-5 triangle. Below we present a table of x_i , y_i , $x_i \delta_i$, and $y_i \delta_i$ after each iteration as determined by the algorithm discussed above.

		able I. Lxain		
i	xi	Уi	x _i δ _i	y _i δ _i
0	333	444	333	444
1	777	111	388	55
2	832	-277	208	-70
3	902	-69	112	- 9
4	911	43	56	2
5	913	-13	28	- 1
6	914	15	14	0
7	914	1	7	0
8	914	- 6	3	- 1
9	915	- 3	1	- 1
10	916	- 2	0	- 1
11	917	- 2	0	- 1
12	918	- 2	0	- 1
13	919	- 2	0	- 1
14	920	- 2	0	- 1
15	921	- 2	0	- 1

Table 1: Example

The reader will note that after iteration #7 the value of y is closest to zero. If the value of x after iteration #7 (namely, 914) is divided by the stretch facter (see table 2) of 1.6466932543, and then rounded to an

integer, the result turns out to be the correct integer, 555. However, $_{a}$ iteration #9, y is stuck at -2, but x (and therefore the result) continues to grow.

Iteration Stretch Factor (K) 0 1.4142135624 1 1 1.5811388301 2 2 1.6298006013 3 3 1.6424840658 4 4 1.6456889158 5 5 1.6464922787 6 6 1.6466932543 7 7 1.6467435066 8 8 1.6467560702 9 1.6467592111 10 1.6467592111 11 1.6467602540 12 1.6467602540 13 1.6467602571 15 1.6467602571 15 1.6467602581 17 1.6467602581 18 1.6467602581 20 1.6467602581 21 1.6467602581 22 1.6467602581 23 1.6467602581 24 1.6467602581 25 1.6467602581 26 1.6467602581 27 1.6467602581		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Iteration Number	Stretch Factor (K)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0	1.4142135624
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	1.5811388301
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	1.6298006013
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3	1.6424840658
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4	1.6456889158
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5	1.6464922787
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6	1.6466932543
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	7	1.6467435066
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8	1.6467560702
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9	1.6467592111
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10	1.6467599964
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11	1.6467601927
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	12	1.6467602418
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	13	1.6467602540
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	14	1.6467602571
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	15	1.6467602579
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	1.6467602581
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	17	1.6467602581
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18	1.6467602581
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	19	1.6467602581
22 1.6467602581 23 1.6467602581 24 1.6467602581 25 1.6467602581 26 1.6467602581 27 1.6467602581 28 1.6467602581 29 1.6467602581 30 1.6467602581	20	1.6467602581
23 1.6467602581 24 1.6467602581 25 1.6467602581 26 1.6467602581 27 1.6467602581 28 1.6467602581 29 1.6467602581 30 1.6467602581	21	1.6467602581
24 1.6467602581 25 1.6467602581 26 1.6467602581 27 1.6467602581 28 1.6467602581 29 1.6467602581 30 1.6467602581	22	1.6467602581
25 1.6467602581 26 1.6467602581 27 1.6467602581 28 1.6467602581 29 1.6467602581 30 1.6467602581	23	1.6467602581
26 1.6467602581 27 1.6467602581 28 1.6467602581 29 1.6467602581 30 1.6467602581	24	1.6467602581
27 1.6467602581 28 1.6467602581 29 1.6467602581 30 1.6467602581	25	1.6467602581
28 1.6467602581 29 1.6467602581 30 1.6467602581	26	1.6467602581
29 1.6467602581 30 1.6467602581	27	1.6467602581
30 1.6467602581	28	1.6467602581
	29	1.6467602581
31 1 6467602581	30	1.6467602581
	31	1.6467602581

Table 2: Stretch Factors

V. SOLUTIONS

We considered several ways to patch the algorithm. Since the v value could not always be forced exactly to zero, we needed another condition that would reliably halt the iterative process without introducing too much error in the result $(\sqrt{x^2 + y^2})$. We considered checking for small rates of change in We decided instead to check whether the absolute value of y x, y, $x\delta$, or $y\delta$. was less than some predetermined cutoff value as our halt condition. The values in Table 1 suggested to us that if the absolute value of y became less than three, it was time to stop. This condition was tested by looping through millions of combinations of integers that maintain the 3-4-5 proportionality and were in our range of interest. We also decided to test The limit for y was incremented from 0 to 127. other limits for y. Table 3 is a representative selection of the distribution of errors as a function of the |y| cutoff. The error frequency counts were truncated to 32760 to avoid When the |y| cutoff was less than three, a second peak in the overflow. error distribution appears between 10 and 14. These occurrences resulted from cases which were never halted at maturity. The drift from the correct result continued until the DO loop was completed (32 iterations).

Using the combinations of integers that maintain the 3-4-5 proportionality, the error stayed below six for a broad range of |y| cutoff values. Eventually, at a sufficiently high cutoff (approximately 100) the size of the error began to rise due to premature halting of the algorithm. These cases involved small initial values of x and y. In particular, when the initial value of y was less than the cutoff, the algorithm halted immediately and returned the initial value of x as its result.

	<u>lable</u>	3: Error	Frequen	<u>cy vs.</u>	Size of I	error and	<u>d Cutoff</u>	
	lyl<0*	1	2	3	28	60	80	101
Error								
0	26	665	1810	3078	32760	32760	32760	32760
1	2566	16177	32760	32760	32760	32760	32760	32760
2	23370	32760	32760	32760	32760	28259	19375	19150
3	32760	32760	32760	32760	8528	6803	5446	4359
4	21159	26561	19078	9693	1446	734	574	436
5	8043	6709	3809	2385	61	4	2	22
6	3159	1188	272	138	1	0	0	1
7	1190	432	5	1	0	0	0	0
8	812	125	0	0	0	0	0	0
9	15729	3839	0	0	0	0	0	0
10	32760	21286	8	0	0	0	0	0
11	32760	16511	11	0	0	0	0	0
12	7576	3258	3	0	0	0	0	0
13	1465	510	5	0	0	0	0	0
14	412	239	37	0	0	0	0	0
15	68	31	1	0	0	0	0	0
16	2	0	0	0	0	0	0	0
17	1	· 0	0	0	0	0	0	0
18	0	0	0	0	0	0	0	0
19	0	0	0	0	0	0	0	0

Table 3: Error Frequency Vs. Size of Error and Cutoff

* This is equivalent to the standard CORDIC algorithm (no lyl cutoff).

Other combinations of integers were also tested. For example, integers that maintain the 5-12-13 proportionality, as well as integers generated randomly, were studied. The general features of the distribution of errors as a function of the |y| cutoff remained the same; however, the region where the errors were less than six moved around.

The function which we finally implemented involves a hybrid approach to evaluating $\sqrt{x^2 + y^2}$. Whenever the input values of both x and y are smaller than 32768, the RTX processor's 31 bit square root function is employed. Otherwise, CORDIC with a lyl cutoff of 100 is used. This combined the best of both worlds. The built in routine was very fast, but could not handle large numbers; whereas, CORDIC produced a much smaller per cent error for large numbers than it did for small numbers. Setting the lyl cutoff at 100 has the advantage of providing a relatively quick exit condition.

9

Furthermore, very little is lost with this choice of cutoff since we only use CORDIC for large values of x and y. Suppose, for example, the initial values of x and y are 30,000 and 40,000 respectively. Since one of these numbers is larger than 32768 we would utilize CORDIC. The expected result for $\sqrt{x^2 + y^2}$ is 50,000. When the vector has been rotated such that y = 100, the value of x is then 49,999.9 (ignoring the stretch factor for the sake of argument). The truncated value of 49,999 is only one less than the correct value of 50,000.

VI. CONCLUSION

While the CORDIC algorithm provides a simple method of evaluation for a wide variety of functions, we found that caution is necessary in certain circumstances. In particular, when integer arithmetic is used and $\sqrt{x^2 + y^2}$ is evaluated by CORDIC, significant errors sometimes arise. This is especially bothersome for small initial values of both x and y. One way to handle this problem is to place a cutoff condition on the absolute value of y. Usually, a built in square root function is available; however, its range may be too limited. We recommend using the built in function because of its speed and accuracy whenever it is possible, and using CORDIC with a suitable cutoff on the absolute value of y to extend the range.

REFERENCES

- 1. Volder, J., "The CORDIC Trigometric Computing Technique", *IRE Transactions on Electronic Computers*, EC-8,(3), pp.330-334 (Sept. 1959).
- 2. Walther, J.S., "A Unified Algorithm for Elementary Functions", AFIPS Spring Joint "Computer Conference, pp. 379-385 (1971).
- 3. Despain, A.M., "Fourier Transform Computers Using CORDIC Iterations", IEEE Transactions Conference on Computers, C-23 ,(10),pp.993-1001 (October, 1974).
- 4. Cavallaro, J.R., and Luk,F.T., "Architectures for a CORDIC SVD Processor", *Proceedings of SPIE - The International Society for Optical Engineering*, 698, pp.45-53 (August,1986).
- 5. Haviland, G.L., and Tuszynski, A.A., "A CORDIC Arithmetic Processor Chip", *IEEE Transactions of Computers*, C-29, (2), pp, 68-79 (Feb., 1980).
- 6. *RTX 2000TM Hardware Reference Manual*, Harris Corporation, Melbourne, Florida, 1990.
- Ahmed, H.A., "Signal Processing Algorithms and Architectures", Technical Report M735-21, Stanford University, Information Systems Lab. (June, 1982).
- 8. Ruckdeschel, F.R., *BASIC Scientific Subroutines*, Volume 2, pp.231-242, BYTE/McGraw-Hill, Peterborough, NH, 1981.
- 9. Johnsson, S.L., and Krishnaswamy, V., "Floating-point Cordic", Research Report YALEU/DCS/RR-473 (April,1986).

DISTRIBUTION LIST

REPORT NO. NADC-91067-50

No.	of	Copies

Defense Technical Information Center Cameron Station Alexandria, VA 22394	2
Office of Naval Technology Attn: Dr. Sherman Gee 800 Quincey St. Arlington, VA 22217	1
NAVAIRDEVCEN:	
Scientific and Technical Library, Code 8131	2
Code 01B	1
Code 301	1
Code 3011	1
Code 302	1
Code 3021	1
Code 303	1
Code 3031	1
Code 40F	1
Code 401	1
Code 402	1
Code 403	1
Code 404	1
Code 50	1
Code 501	1
Code 5012 (Dr. Jon Davis)	1
Code 5012 (Dr. Lloyd Bobb)	1
Code 502	1
Code 503	1
Code 504	1
Code 505	1
Code 505A (Dr. Robert M. Williams)	30
Code 5051 (Robert G. Peck)	10
Code 5051 (James J. Davidson)	10
Code 5032 (Anthony Passamante)	1
Code 6012	1
Code 6051 (Dr. Richard Llorens)	1